Determination of Aflatoxin M₁ and Ochratoxin A in Raw, Pasteurized and UHT Milk in Turkey

Cagla Turkoglu & Erhan Keyvan

ABSTRACT

Background: Mycotoxins produced by yeast and fungi have toxic effects on human and animal health. Aflatoxin B₁ (AFB₁) is the most toxic hepatocarcinogen to mammals. Aflatoxin M₁ (AFM₁), which has been found in milk and dairy products, is the hydroxylated metabolite of AFB₁. Aflatoxin M₁ is formed by the cytochrome P450 enzyme in the liver. Ochratoxin A (OTA) is synthesized by Aspergillus and Penicillium species. Ochratoxin A is known to cause teratogenic, immunotoxic, nephrotoxic and carcinogenic effects. Due to the potential harmful effects on human and animal health, OTA has also been receiving increased attention globally; however, there is limited information on the presence of OTA in milk and dairy products. The aim of this study was to determine how mycotoxins impact the hygienic quality of raw and heat-processed milk.

Materials, Methods & Results: In this study, a total of 105 milk samples were analyzed (35 raw, 35 pasteurized and 35 UHT) to identify AFM₁ and OTA in raw, pasteurized and ultra-high temperature processing (UHT) milk. The levels of AFM₁ were detected by using the enzyme-linked immunosorbent assay (ELISA). The milk samples were centrifuged in order to remove the fat content from the milk. After centrifugation, the upper cream layer was withdrawn with a pipette. The non-fat liquid portion was placed in wells at 100 μL for analysis. The concentration of AFM₁ in the milk samples was analyzed by AFM₁ test kit. The milk samples with AFM₁ levels greater than 50 ng/L were confirmed by using High-Performance Liquid Chromatography (HPLC). An Ochratoxin A Serum / Milk ELISA test kit was used for the analyses of OTA. The analyses were made according to the manufacturer’s instructions, and samples were analyzed in duplicate. The absorbance value of milk samples was obtained from the ELISA plate reader at 450 nm. The mean value of AFM₁ was found to be 19.54 ng/L in the milk samples. According to the European Commission (EC), the maximum limit for AFM₁ in milk is 50 ng/L. In our study, eight (7.61%) of the 105 samples exceeded this limit. The mean value of OTA was found to be 119 ng/L in the milk samples. The relationship between milk type and levels of AFM₁ was found to be significant at (P < 0.01). The mean value of AFM₁ in pasteurized milk was found statistically significant and lower than raw milk (P < 0.05). The difference between levels of OTA and milk type was not statistically significant at (P > 0.05).

Discussion: Milk is a great protein source especially for children in the age of growth. Yeasts such as Fusarium, Aspergillus and Penicillium produce mycotoxins that cause food, feed contamination. Owing to carcinogenic, mutagenic and teratogenic effects of AFM₁, presence of AFM₁ in milk samples may adversely affect human health. The presence of AFM₁ in different contamination levels can be observed in milk and milk products. Factors such as ration type, climate conditions, feed storage conditions, feeding regime and health status of dairy animals may be effective in the occurrence of these contamination. It is necessary to establish legal limits by conducting effective research on the existence of OTA in animal-derived products. The existence of mycotoxins in milk and dairy products can be reduced by preventing the contamination of feed materials with yeast and molds used in the feeding of dairy cows. Milk is one of the most important protein source for the human, effective hygienic controls should be applied to prevent microbiological and chemical hazards. Our data suggest that heat-treated milk may also be dangerous to human health, mycotoxins contamination should be controlled with monitoring programs routinely in milk and feed materials for food safety.

Keywords: aflatoxin M₁, ochratoxin A, Milk.
INTRODUCTION

Aflatoxins (AF) have hepatotoxic, carcinogenic and immunosuppressive effects which are generally produced by strains of *Aspergillus flavus* [40,49]. Aflatoxin M₁ (AFM₁) is the hydroxylated metabolite of aflatoxin B₁ (AFB₁) which has been found in milk and dairy products [12]. Aflatoxin M₁ shows resistance to heat, and milk processing technologies, like pasteurization and sterilization, cannot deactivate it [6]. It is also possible for milk products, like yoghurt, butter and cheese, to be contaminated with AFM₁ because of milk contamination [8,11,21]. In recent years, many researchers have reported AFM₁ contamination in raw, pasteurized and Ultra High Temperature (UHT) milk from Turkey and other countries [5,7,30,31,45] (Table 1). The potential existence of AFM₁ levels in milk and milk products is the reason they should be monitored continuously for the sake of public health [22].

Ochratoxin A (OTA) is a mycotoxin which contaminates a wide range of plant products [4,27,33,46]. Ochratoxin A was classified into group 2B as a possible human carcinogen [27]. Even though it originates in plant products, OTA is a stable molecule that can remain unchanged in food even after processing [43] Carryover contamination of OTA was observed in pigs and chickens fed with feed containing low levels of OTA [34,35]. Moreover, high levels of OTA contamination were found in food in Europe [50]. Consumption of OTA-contaminated, animal-derived food products are a public health risk. [1]. For this reason, it is important for meat and milk to be tested and monitored for OTA content [16]. The objectives of this study were to determine AFM₁ and OTA content in raw, pasteurized and UHT milk samples.

Table 1. Incidence of AFM₁ from different countries.

<table>
<thead>
<tr>
<th>Milk type</th>
<th>Sample no.</th>
<th>Positive sample no.</th>
<th>AFM₁ (ng/L)</th>
<th>Exceed 50 ng/L* (%)</th>
<th>Country</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw and pasteurized</td>
<td>180</td>
<td>100 (55.6%)</td>
<td>21.31</td>
<td>30 (30.0)</td>
<td>Iran</td>
<td>[23]</td>
</tr>
<tr>
<td>Raw</td>
<td>254</td>
<td>204 (80.3%)</td>
<td>66.00</td>
<td>144 (56.7)</td>
<td>Iran</td>
<td>[19]</td>
</tr>
<tr>
<td>Raw</td>
<td>3,635</td>
<td>1538 (42.4%)</td>
<td>14.3</td>
<td>105 (2.9)</td>
<td>Macedonia</td>
<td>[14]</td>
</tr>
<tr>
<td>Raw</td>
<td>129</td>
<td>129 (100%)</td>
<td>19.50</td>
<td>18 (19.95)</td>
<td>Brazil**</td>
<td>[39]</td>
</tr>
<tr>
<td>Raw and UHT</td>
<td>194</td>
<td>47 (24.23%)</td>
<td>20.60</td>
<td>13 (27.66)</td>
<td>Crotia</td>
<td>[7]</td>
</tr>
<tr>
<td>Pasteurized</td>
<td>25</td>
<td>17 (68.00%)</td>
<td>30.60</td>
<td>4 (23.53)</td>
<td>Lebanon</td>
<td>[6]</td>
</tr>
<tr>
<td>Raw</td>
<td>92</td>
<td>5 (5.43%)</td>
<td>20.50</td>
<td>0 (0.00)</td>
<td>Spain</td>
<td>[41]</td>
</tr>
<tr>
<td>Raw</td>
<td>678</td>
<td>540 (79.65%)</td>
<td>282.00</td>
<td>382 (70.74)</td>
<td>Serbia</td>
<td>[45]</td>
</tr>
<tr>
<td>Raw</td>
<td>416</td>
<td>51 (12.3%)</td>
<td>37.00</td>
<td>0 (0.00)</td>
<td>Italy</td>
<td>[42]</td>
</tr>
<tr>
<td>Raw</td>
<td>5,650</td>
<td>267 (4.7%)</td>
<td>36.8</td>
<td>63 (1.1)</td>
<td>China**</td>
<td>[31]</td>
</tr>
<tr>
<td>Raw</td>
<td>156</td>
<td>143 (91.7%)</td>
<td>346.2</td>
<td>125 (80.1)</td>
<td>Pakistan</td>
<td>[5]</td>
</tr>
<tr>
<td>UHT</td>
<td>41</td>
<td>30 (91.1%)</td>
<td>17.76</td>
<td>3 (7.3)</td>
<td>Turkey</td>
<td>[30]</td>
</tr>
</tbody>
</table>

*European Commission and Turkish Food Codex determined the limit of AFM₁ in milk as 50 ng/L. **Brazil and China determined the limit of AFM₁ in milk as 500 ng/L.

MATERIALS AND METHODS

Milk samples

In our study, a total of 105 milk samples were analyzed (35 raw, 35 pasteurized and 35 UHT) to identify AFM₁ and OTA in raw, pasteurized and UHT milk.

ELISA Analysis

The milk samples were centrifuged at 3,500 g for 10 min at 10°C (Eppendorf 5804R, Germany) in order to remove the fat content from the milk. After centrifugation, the upper cream layer was withdrawn with a pipette. The non-fat liquid portion was placed in wells at 100 μL for analysis. The concentration of AFM₁ in the milk samples was analyzed by competitive enzyme-linked immunosorbent assay (ELISA) using an AFM₁ test kit (RIDASCREEN; R-Biopharm, Darmstadt, Germany) procedure suggested by the manufacturer, with a limit of detection (LOD) of 5 ng/L for milk. An Ochratoxin A Serum / Milk ELISA (Helica, 991OCH01MS-96) test kit was used for the analyses of OTA. The analyses were made according to the manufacturer’s instructions, and samples were analyzed in duplicate.
The absorbance value of milk samples was obtained from the ELISA plate reader at 450 nm (ELX-800; Bio-Tek Instruments, Winooski, VT, USA) and RIDAWIN software (RIDA SOFT Win; R-Biopharm AG) was used to evaluate the results. The samples containing more than 5 ng/L of AFM\textsubscript{1} were considered positive assays. The standard curve in Figure 1 was used to determine OTA values.

![Figure 1. Typical standard curves (y = -22.56ln (x) + 11,413 R2 = 0.969) for ochratoxin A used in the evaluation of Ochratoxin A ELISA (n = 105). B/B0, ratio of the absorbance corresponding to the given standard to the absorbance of the 0 ng/mL standard. (maximum signal).](image)

HPLC Analysis

The milk samples with AFM\textsubscript{1} levels greater than 50 ng/L were confirmed by using High-Performance Liquid Chromatography (HPLC) in the Scientific and Technology Application and Research Center of Mehmet Akif Ersoy University. For the measurements of AFM\textsubscript{1} in the samples, the method of Dragacci et al. [15] was adopted for HPLC. After reaching a temperature of 37°C, the fat from the milk samples (100 mL) was removed by centrifugation at 2,000 x g. Defatted milk was filtered through Whatman No. 4 filter paper. Fifty milliliters of filtered milk was passed through an immunoaffinity clean-up column (VICAM, USA). The column was washed with 20 mL of distilled water and then air dried. Aflatoxin M\textsubscript{1} was eluted with 4 mL of acetonitrile, and the acetonitrile phase was evaporated. The residue was dissolved in 3 mL of mobile phase and was injected into the HPLC system (Shimadzu, Kyoto, Japan).

Statistical Analysis

The difference between the milk sample types and AFM\textsubscript{1} and OTA levels (see in Table 2) was determined by one-way analysis of variance (ANOVA) and Tukey’s test using the SPSS software package (version 15.0 for Windows).

RESULTS

In this study, a total of 105 milk samples (35 raw, 35 pasteurized and 35 UHT) were analyzed to detect contamination levels of AFM\textsubscript{1} and OTA. Table 2 shows the levels of AFM\textsubscript{1} and OTA contamination in the milk samples. The range of AFM\textsubscript{1} contamination in raw, pasteurized and UHT milk samples was found to have a mean value of 25.45 ± 3.38 ng/L, 12.86 ± 1.05 ng/L, 20.29 ± 2.77 ng/L, respectively. The mean levels of OTA contamination were detected at 137 ± 57 ng/L, 135 ± 8 ng/L, 85 ± 4 ng/L in raw, pasteurized and UHT milk samples, respectively. According to the results, AFM\textsubscript{1} levels in eight of the 105 (7.61%) milk samples were determined higher than the maximum limit of the European Commission (EC) [18] (Table 3). The mean value of AFM\textsubscript{1} in pasteurized milk was found statistically significant and lower than raw milk (P < 0.05). The difference between levels of OTA and milk type was not statistically significant at (P > 0.05).

DISCUSSION

The presence of AFM\textsubscript{1} in milk and milk products is a significant public health problem, as AFB\textsubscript{1} and AFM\textsubscript{1} are human carcinogens [27,33]. In the current study, nearly all milk samples were found to be positive for signs of AFM\textsubscript{1} (limit of detection: 5 ng/L). High levels of AFM\textsubscript{1} have also been reported in Turkey, Iran, Pakistan and Kuwait [2,10,13,24,37]. By contrast, researchers from Turkey, Crotia, Iran and Macedonia reported lower levels of AFM\textsubscript{1} than the current study [7,14,23,30].

Various levels of AFM\textsubscript{1} can contaminate milk and dairy products. Contamination differences can arise from multiple factors, such as ration type, climate conditions, feed preservation conditions, feeding regime, and the health statuses of dairy animals. In Dimitrieska-Stojkovic et al.’s [14] study, they determined an AFB\textsubscript{1} contamination rate of 13.4% in feed materials, estimating that the carryover levels of AFM\textsubscript{1} in milk ranged from 0.22% to 3.47%. In summary, this study revealed that AFB\textsubscript{1} contamination in feed materials can act as a significant source of AFM\textsubscript{1} in milk. Contamination of milk and dairy products with AFM\textsubscript{1} is a serious problem for public health. AFM\textsubscript{1} should be routinely monitored as a food quality control measure for human health [38].
The level of AFM$_1$ contamination in milk and dairy products may depend on many factors, such as geographical location, seasonal effects and milk type [28]. Based on our results, the mean value of AFM$_1$ contamination was found to be 19.54 ng/L in all milk samples. All the same, contamination levels of AFM$_1$ in milk samples from Pakistan, Serbia, Iran, and Lebanon have had varied values of 346.2 ng/L, 282.0 ng/L, 66.0 ng/L, and 30.60 ng/L, respectively [5,6,19,45]. Therefore, because the high-consumption level of AFM$_1$-contaminated milk and dairy products poses serious health problems, national authorities should enroll in educational programs about farm management and feed contamination.

Seasonal differences can also affect the degree of AFM$_1$ contamination in collected samples. Previous studies have shown that levels of AFM$_1$ were higher in winter seasons than in warmer months of the same year [20,26]. Therefore, the concentrated feeding of dairy cows during winter seasons may contribute to AFM$_1$ contamination in milk. As the present study does not provide a seasonal assessment, subsequent studies about the prevalence of AFM$_1$ in milk and dairy products should evaluate the influence of seasonal factors, as well.

The European Commission and Turkish Food Codex determined the limit of AFM$_1$ in milk to be 50 ng/L [18,45]. All the same, in the current study, 14.28% of the raw milk samples and 8.57% of the UHT were found to have higher values than the Turkish Food Codex’s maximum AFM$_1$ limit. Due to AFM$_1$ regulations of China (500 ng/L), Xiong et al. [51] reported lower excess levels of AFM$_1$ in UHT milk samples than the current study. Pei et al. [38] were reported that all of the samples were below the Chinese limit, while 72% (97 out of 135) milk products samples were found to be higher than the maximum acceptable limits (50 ng/L) of the EU. Studies from different countries were reported various levels of AFM$_1$ depending on the legislative differences. Even if the obtained results are below the relevant legal regulations, the effect of long term AFM$_1$ exposure on humans should be investigated.

Despite, none of the pasteurized milk samples exceeded the AFM$_1$ limit, and the mean levels of the samples were found to be 12.86 ng/L in the present study. Prolonged exposure to aflatoxin in small quantities can cause cancer and immunosuppression [32]. Thermal processes, such as pasteurization and sterilization, do not affect AFM$_1$ [6]. Therefore, heat-treated milk may also be dangerous to human health.

Ochratoxins are found in a wide range of foods and feedstuffs. More specifically, OTA can be identified in animal-derived products, such as meat and milk [3]. A few studies have studied the prevalence of OTA in milk. In the current study, the mean OTA levels in milk samples were observed to be higher than in previous research (see in Table 4). While the EC established a limit for OTA in foodstuffs, outside of Slovakia, which restricts the amount of OTA in milk to 5 μg/kg, there are no regulations to reduce the incidence of OTA in milk and milk products. By comparison, the current study found amounts of OTA that were lower than the limits established in Slovakia.
In a previous work, we calculated the maximum limits of OTA (200 ng/L) for a child (four-years old) in accordance with the Nordic Working Group [36], which suggested a tolerable daily intake (TDI) of 5 ng/kg bw of OTA in humans [29]. In the current study, 4 out of 105 (3.8%) milk samples showed more than the maximum limit of 200 ng/L of OTA. The European Food Safety Authority (EFSA) established the tolerable weekly intake (TWI) of OTA to be 120 ng/kg bw [19]. According to the results of the current study, the weekly tolerable OTA level was below the limit that was reported by the EFSA. As such, additional research should work to assess OTA’s presence within milk and dairy products. Although there are no limitations or legislation about the presence of OTA in milk and milk products, small quantities of OTA can prove harmful, especially to children.

CONCLUSION

Because milk is one of the most important sources of protein for human beings, effective hygienic controls should be applied to prevent microbiological and chemical hazards. To ensure food safety, mycotoxin contamination should also be routinely controlled with monitoring programs of milk and feeding materials. Due to the carcinogenic, mutagenic, and teratogenic effects of AFM₁, its presence in dairy can adversely influence human health. As adults have access to a more diverse diet than infants and children, OTA in cow’s milk is also more likely to impact the young. It is therefore necessary to establish legal limits by conducting effective research on the existence of OTA in animal-derived products. Mycotoxins can also be reduced in milk and dairy products by avoiding the use of feeding materials that have been contaminated with yeast and molds.

MANUFACTURERS

1. Eppendorf AG. Hamburg, Germany.
2. R-Biopharm AG. Darmstadt, Germany.
3. Helica Biosystems Inc. Santa Ana, CA, USA.
4. Bio-Tek Instruments Inc. Winooski, VT, USA.
5. VICAM. Milford, MA, USA.
7. SPSS Inc. Chicago, IL, USA.

ACKNOWLEDGEMENTS. This study is part of the first author’s Master thesis. This study was supported by the Burdur Mehmet Akif Ersoy University Scientific Research Projects Committee (Project Number: 0400-YL-16).

DECLARATION OF INTEREST. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

REFERENCES

