You are here: Home PUBLICATIONS Analysis and Optimization of an Inductive Power Transfer With a Randomized Method

Analysis and Optimization of an Inductive Power Transfer With a Randomized Method

This paper introduces the analysis of the efficiency and transferred power of an inductive link circuit with different network configurations of capacitors connected to primary and secondary coils. The best performance for both cited objective functions was observed with two capacitors connected to the input coil and two capacitors connected to the output coil. However, the output equations in this circuit configuration for both efficiency and output power are very complex and a numerical method had to be applied to compute the capacitors values. Since an exhaustive search would be long, some simplifications were assumed to reduce the search space and the processing time. Thus, a search algorithm based on a randomized method was developed and successfully applied. The results for both efficiency and output power of four capacitors configuration were compared with other usual approaches, such as the single and two capacitors compensation. Finally, a basic prototype was built and the theoretical results were validated. Both simulated and experimental results of the four capacitor configuration showed a significant improvement on the efficiency and output power of the inductive link.