Preparation and characterization of the plant drug from the cultivated *Amburana cearensis* including chromatographic analysis by HPLC-PAD

N. R. LIMA¹, A. H. SILVA¹, S. M. ARARUNA¹, T. M. ROCHA¹, J. T. PIRES FILHO¹, L. K. A. M. LEAL¹

¹Departament of Pharmacy, Federal University of Ceara, Brazil.

Keywords: Amburana cearensis; coumarin; HPLC; plant drug; vanillic acid.

Introduction: *Amburana cearensis* is popularly known as “cumaru” and used in folk medicine for the treatment of respiratory diseases such as asthma. The plant presents an important medicinal value, however this species is at risk of extinction. The aim of this study was to develop a method for preparation and characterization of the plant drug from cultivated *A. cearensis*. **Experimental Part:** Aerial parts (APAC) and xylopodium (XAC) of *A. cearensis* were collected at 7 months and dried in an oven with air renewal/circulation for different periods (6-120h) at 35°C. After drying, the material was reduced in grinder of knives. The powder was characterized by granulometric and phytochemical analysis, total ash, acid-insoluble ash, water and ethanol extractable contents. The HPLC analysis (markers: vanillic acid-VA and coumarin-CM) was determined employing an analytical method validated previously (Araruna, 2011). **Results/Discussion:** The fresh plant (moisture:78.1±0.39% for APAC; 85.6±0.77% for XAC), after drying, revealed a moisture within the range specified by the Brazilian Pharmacopoeia of 7.3% for APAC in 24h and 8.2% in 48h for XAC. The granulometric distribution showed that most of the particles were retained by screens with a mesh of 0.35mm (mean diameter: 0.423±0.02mm), characterized as a moderately coarse powder. The total ash and acid-insoluble ash contents were 4.56±0.03% and 0.59±0.22%, respectively, while the content of substances extractable in water was higher than substances extractable in ethanol. The phytochemical analysis revealed the presence of tannins, alkaloids and coumarin. The HPLC analysis of ethanolic extracts from the whole plant allowed detecting and quantifying 2 actives principles: VA (0.21mg/mL) and CM (1.42mg/mL). **Conclusion:** The present study allowed establishing the pharmacognostic parameters for cultivated *A. cearensis*, which may be used for quality control of this plant drug when used as pharmaceutical raw material. **Financial support:** CAPES and Banco do Nordeste (BNB).