FDS4141 P-Channel PowerTrench® MOSFET
-40V, -10.8A, 13.0mΩ

Features
- Max \(r_{DS(on)} \) = 13.0mΩ at \(V_{GS} = -10V, I_D = -10.5A \)
- Max \(r_{DS(on)} \) = 19.0mΩ at \(V_{GS} = -4.5V, I_D = -8.4A \)
- High performance trench technology for extremely low \(r_{DS(on)} \)
- RoHS Compliant

General Description
This P-Channel MOSFET has been produced using Fairchild Semiconductor’s proprietary PowerTrench® technology to deliver low \(r_{DS(on)} \) and optimized \(BV_{DSS} \) capability to offer superior performance benefit in the applications and optimized switching performance capability reducing power dissipation losses in converter/inverter applications.

Applications
- Control switch in synchronous & non-synchronous buck
- Load switch
- Inverter

MOSFET Maximum Ratings \(T_A = 25°C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DS})</td>
<td>Drain to Source Voltage</td>
<td>-40</td>
<td>V</td>
</tr>
<tr>
<td>(V_{GS})</td>
<td>Gate to Source Voltage</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>(I_D)</td>
<td>Drain Current</td>
<td>-10.8</td>
<td>A</td>
</tr>
<tr>
<td>(E_{AS})</td>
<td>Single Pulse Avalanche Energy</td>
<td>(Note 3) 294</td>
<td>mJ</td>
</tr>
<tr>
<td>(P_D)</td>
<td>Power Dissipation (T_A = 25°C)</td>
<td>5</td>
<td>W</td>
</tr>
<tr>
<td>(T_{J, STG})</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Ratings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{JUC})</td>
<td>Thermal Resistance, Junction to Case</td>
<td>(Note 1) 25</td>
<td>°C/W</td>
</tr>
<tr>
<td>(R_{JUA})</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>(Note 1a) 50</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Package Marking and Ordering Information

<table>
<thead>
<tr>
<th>Device Marking</th>
<th>Device</th>
<th>Package</th>
<th>Reel Size</th>
<th>Tape Width</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDS4141</td>
<td>FDS4141</td>
<td>SO-8</td>
<td>13”</td>
<td>12mm</td>
<td>2500 units</td>
</tr>
</tbody>
</table>
Electrical Characteristics \(T_J = 25^\circ C \) unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BV_{DSS})</td>
<td>Drain to Source Breakdown Voltage</td>
<td>(I_D = -250\mu A, V_{GS} = 0V)</td>
<td>-40</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(\Delta BV_{DSS})</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>(I_D = -250\mu A,) referenced to (25^\circ C)</td>
<td></td>
<td>-33</td>
<td></td>
<td>mV/°C</td>
</tr>
<tr>
<td>(I_{DSS})</td>
<td>Zero Gate Voltage Drain Current</td>
<td>(V_{DS} = -32V,)</td>
<td></td>
<td>-1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>(I_{GSS})</td>
<td>Gate to Source Leakage Current</td>
<td>(V_{GS} = \pm 20V, V_{DS} = 0V)</td>
<td></td>
<td>±100</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Off Characteristics

On Characteristics

Dynamic Characteristics

Switching Characteristics

Drain-Source Diode Characteristics

NOTES:
1. \(R_{\theta JA} \) is determined with the device mounted on a \(1\text{in}^2 \) pad of \(2 \text{ oz} \) copper. \(R_{\theta JC} \) is guaranteed by design while \(R_{\theta CA} \) is determined by the user's board design.
2. Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.
3. UIL condition: Starting \(T_J = 25^\circ C, L = 3mH, I_{AS} = -14A, V_{DD} = -40V, V_{GS} = -10V. \)

![Image](image_url)
Typical Characteristics $T_J = 25^\circ C$ unless otherwise noted

![Graph of On-Region Characteristics](image1)

Figure 1. On-Region Characteristics

![Graph of Normalized On-Resistance vs Drain Current and Gate Voltage](image2)

Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

![Graph of Normalized On-Resistance vs Junction Temperature](image3)

Figure 3. Normalized On-Resistance vs Junction Temperature

![Graph of On-Resistance vs Gate to Source Voltage](image4)

Figure 4. On-Resistance vs Gate to Source Voltage

![Graph of Transfer Characteristics](image5)

Figure 5. Transfer Characteristics

![Graph of Source to Drain Diode Forward Voltage vs Source Current](image6)

Figure 6. Source to Drain Diode Forward Voltage vs Source Current
Typical Characteristics \(T_J = 25^\circ C \) unless otherwise noted

![Figure 7. Gate Charge Characteristics](image)

![Figure 8. Capacitance vs Drain to Source Voltage](image)

![Figure 9. Unclamped Inductive Switching Capability](image)

![Figure 10. Maximum Continuous Drain Current vs Ambient Temperature](image)

![Figure 11. Forward Bias Safe Operating Area](image)

![Figure 12. Single Pulse Maximum Power Dissipation](image)
Typical Characteristics $T_J = 25^\circ C$ unless otherwise noted

Figure 13. Transient Thermal Response Curve
TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEX®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FPS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
GTO™
i-Lo™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
PDP-SPM™
Power220®
Power247®
POWEREDGE®
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
The Power Franchise®
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
μSerDes™
UHC®
UniFET™
VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>