A NEW MINLP MODEL FOR WORK AND HEAT EXCHANGE NETWORK SYNTHESIS AND OPTIMIZATION

Authors:
Lucas Francisco Dos Santos
Dra. Caliane Bastos Borba Costa
Dr. Mauro A. S. S. Ravagnani
1. INTRODUCTION
1.1. Work and Heat Integration

Without work and heat integration

With work and heat integration
1.2. Work and Heat Exchange Network (WHEN)

- Network of heat exchangers, heaters, coolers, utility compressors and turbines, single-shaft-turbine-compressors, motors, electric generators, and valves;
- Performs demand for heating, cooling, compressing, and expanding;
- Minimum total annualized cost
Wechsung et al. (2011) presented a superstructure-based optimization model for HEN synthesis of streams that could compress and/or expand in pre-defined routes using Pinch Analysis and mathematical programming.

Onishi et al. (2014) introduced work integration; substituted Pinch Analysis to Yee and Grossmann (1990) HEN superstructure; changed objective function to TAC;

Huang & Karimi (2016) proposed a multi-stage WHEN superstructure for high-pressure, cold and low-pressure, hot streams;

Nair et al. (2018) modified that WHEN superstructure to deal with streams that are not pre-classified;

Pavão et al. (2019) proposed a new matrix-based formulation and implementation from Onishi et al. (2014) and solved with a two-level optimization approach using Simulated Annealing and Rocket Fireworks Optimization;
3. OBJECTIVE

- Present an MINLP model for WHEN synthesis and optimization;
- Develop a solution approach to this MINLP;
- Apply this framework to solve a small four-stream WHEN problem.
4. METHODOLOGY
4.1. Superstructure

Novelties:

- Process streams are not classified;
 - Idea of pseudo-identity
- Non-isothermal mixing consideration
4.2. MINLP model

- \(\text{min TAC} = \text{Capital cost} + \text{Operating cost} \)
- s.t. \(\begin{cases} \text{Mass and energy balance;} \\ \text{Thermodynamic constraints;} \\ \text{Design constraints;} \end{cases} \)
4.3. Decision Variables

Binary decision variables:
\(y(s, n, ss, nn, k), \)
\(y_w(s, n), \)
\(y_s(s, n), \)
\(e(s, n), \)
\(ue(s, n), \)
\(c(s, n), \)
\(uc(s, n), \)
\(v(s, n) \)

Continuous decision variables:
\(d(s, n), \)
\(Q(s, n, ss, nn, k), \)
\(dh(s, n, ss, nn, k), \)
\(dc(s, n, ss, nn, k), \)
\(Q_w(s, n), \)
\(Q_s(s, n), \)
\(P(s, n) \)
4.4. Solution Approach

- Initialize Topology \((y, y_w, y_s, e, ue, c, uc, v)\)
- Initialize Continuous \((d, Q, Q_w, Q_s, dh, dc, P)\)
- PSO of Continuous: \(\min \ TAC(d, Q, Q_w, Q_s, dh, dc, P)\)
- Topology Acceptance Criteria of SA
- Modify Topology \((y, y_w, y_s, e, ue, c, uc, v)\)
- SA Step and Termination Criteria
- Store Configuration, If Accepted \((y, y_w, y_s, e, ue, c, uc, v, d, Q, Q_w, Q_s, dh, dc, P)\)
- No
- Yes
- Return the Best Configuration Stored \((y, y_w, y_s, e, ue, c, uc, v, d, Q, Q_w, Q_s, dh, dc, P)\)
5. RESULTS AND DISCUSSION
5.1. Problem statement

Table 1 – Stream data (Huang & Karimi, 2016)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>390</td>
<td>320</td>
<td>0.5</td>
<td>0.1</td>
<td>3.0</td>
<td>0.1</td>
</tr>
<tr>
<td>s2</td>
<td>410</td>
<td>660</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>s3</td>
<td>550</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>s4</td>
<td>320</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td>HU</td>
<td>680</td>
<td>680</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CU</td>
<td>300</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
5.2. Results

This work

TAC $172,031

Huang & Karimi (2016)

TAC $174,560
5.3. Discussion

Total annualized cost reduced

Features of superstructure did not show up at final solution such as:
- Pseudo-streams
- Non-isothermal consideration
6. CONCLUSIONS

- The new MINLP model for WHEN synthesis and optimization together with the two-level meta-heuristic optimization approach improved the TAC result of a literature problem;

- The concept of pseudo-stream and non-isothermal mixing consideration were not appreciated because:
 - the superstructure is unnecessarily complicated for small problems;
 - the optimization approach is incapable of dealing with large and complicated MINLP.
ACKNOWLEDGEMENTS

- Coordination for the Improvement of Higher Education Personnel - CAPES (Brazil), processes 88887.217374/2018-00 e 88881.171419/2018-01;

- National Council for Scientific and Technological Development - CNPq (Brazil), process 305055/2017-8.
REFERENCES

Thanks for your attention!