APPLICATION OF MODELING AND SIMULATION IN PROCESS SYNTHESIS AND OPTIMIZATION

IVAN BESSA

MAY 21ST, 2019
Application of Modeling and Simulation in Process Synthesis and Optimization

COMPETITIVE INTEGRATION

EXTRACTION
Feedstocks

1st GENERATION
Basic petrochemicals
- Naphtha
- Natural gas
- Ethanol
- Brine

2nd GENERATION
Thermoplastic resins
- Ethylene
- Propylene
- Chlorine
- Caustic soda
- PE
- PP
- PVC

3rd GENERATION
Consumer products
Application of Modeling and Simulation in Process Synthesis and Optimization

BASIC PETROCHEMICALS

- Olefins
- Aromatics
- Solvents

- Fuels
- Specialties

POLYMERS

- PE
- PP
- Green PE

- EVA
- PVC
Application of Modeling and Simulation in Process Synthesis and Optimization

Steady-State Models
- Process synthesis
- Off-line optimization
- On-line optimization

Dynamic Models
- Reactor design
- Control strategy design
- Flare system evaluation

Computational Fluid Dynamics
- Special flow conditions that can affect equipment performance
Application of Modeling and Simulation in Process Synthesis and Optimization

Commercial software (Aspen Plus)

Application to process optimization

STEADY-STATE MODELS
Application of Modeling and Simulation in Process Synthesis and Optimization

STEADY-STATE MODELS

Application to process synthesis

Commercial software (Aspen Plus)
Application of Modeling and Simulation in Process Synthesis and Optimization

1st step: thermodynamic modeling

- Identification of the significant system components
- Selection of a thermodynamic model
- Checking of accuracy of pure component vapor pressure data
- Identification of the most important component pairs
- Checking of accuracy of vapor-liquid equilibrium curves

If necessary, acquisition of pure vapor pressure data
If necessary, acquisition of binary vapor-liquid equilibrium data

Opportunity to a joint development with an university or a research institution: experimental measurement of phase equilibrium and pure component data
Collection of plant data of a similar system

Tuning of the model with plant data

Checking of mass and energy balances

Checking of key component separations

Consolidation of a base-case model

2nd step: process modeling

If necessary, data reconciliation to reduce balance gaps

If necessary, revision of thermodynamic modeling

3rd step: application of the model
Application of Modeling and Simulation in Process Synthesis and Optimization

Application to process design and optimization: dehydration of ethanol

- 4 pairs furnace-reactor in series
- Ethanol is fed to the 4 reactors
- Ethylene is the main product
- Ethane is an important product contaminant
- Besides ethane, many oxigenated contaminants have to be taken into account
- Applications of the model:
 - Catalyst volume calculation for a capacity expansion project
 - Real-time optimization

Model developed at UFRJ
Kinetic data from laboratory

Development of a model with laboratory data

Improvement of the model with pilot plant data

Scale-up

Consolidation of a base-case model

Opportunity to a joint development with an university or a research institution: development of the model; experimental measurement of kinetic data

If necessary, more data from laboratory

Parameter adjustment to consider catalyst deactivation
Computational Fluid Dynamics

Applications

- Temperature calculations in furnaces
- Air and fuel flow in burners
- Two-phase flow patterns: evaluation of risk of erosion
- Design of mixing devices for two different streams
- Safety valves discharge flow rates
- Scale-up

Points of attention

- Internal expertise still being developed
- Technical assistance from the software licensor still very important
- Hardware requirements

Commercial software (Star - CCM+)